
* Fermi National Accelerator Laboratory 

FERMILAB-Conf-93/321-A 
October 1993 

COSMOLOGICAL PHASE TRANSITIONS 

Edward W. KOLB 
Fermi Nalional Accelerdor Lnboratory and The University of Chicago 

Abstract 

If modern ideas about the role of spontaneous symmetry breaking in fundamental 
phys~s are correct, then the Universe should have undergone a series of phase transitions 
early in its history. The study of cosmological phase transitions has become an important 
aspect of early-Universe cosmology. In this lecture I review some very recent work on three 
aspects of phase transitions: the elcctroweak transition, texture, and axions. 

1. Introduction 

Perhaps the moe.t bnport.ant. concept in modern particle theory is that of spontaneous 
symmetry breaking (SSB). TI ke idea that. there are underlying symmetries of Nature that are 
not manifest in the structure of the vacuum appears to play a crucial role in the unification 
of the forces. In all unified gauge theories-including the standard electroweak model-the 
underlying gauge symmetry is larger than the unhrokcn SU(3)c @ U(~)EM. Of particular 
interest for cosmology is the theorct.ical expectation that at high temperatures. symmetries 
that arc spontaneously broken today were restored, aud that during the evolution of the 
Universe there were phase transitions associated with spontaneous breakdown of gauge (and 
perhaps global) symmetries. For example, wc can be reasonably confident that there was such a 
phase transistion at a temperature of order 300 GeV and a time of order lo-” see, associated 
with the breakdown of SCJ(?)L @ V(l),, - (i(l)E Moreover, the vacuum structure in 
many spontaneously broken gauge theories is very rich: Topologically stable configurations 
of gauge and Higgs fields exist as domain walls, cosmic strings, and monopoles. 111 addition, 
classical configurations that are not t,opolngically stnhle. so-called nontopological solitons, may 
exist and be stable for dynamical reaons. Interesting examples include soliton stars, Q-halls, 
nontopological cosmic strings, global texture, sphalerons, and so on. 

2. The Electraweak Phase Transition 

The possibility that the baryon nwnbcr of the Universe can be generated at the elec- 
troweak phase transition has triggered H lof of interest in understanding the dynamics of 

To appear in the Proceedings of the 37fh Yamada Conference, June E-12,1993, Tokyo, Japan 

a Operated by Uolversities Research Association Inc. under contract with the United States Department of Energy 



2 

weakly first-order phase transitions in the early Universe. Since the original work of Kuzmin, 
Rubakov, and Shaposhnikov (1985) a great deal of effort has been dedicated to the construction 
of viable models that could generate the required haryon asymmetry. 

As is well-known, one of the necessary iugredients of a successful baryogenesis scenario 
is a departure from equilibrium. Most sceuarios of electroweak baryogenesis rely on the lirst- 
order nature of the phase transition to generate the required out-of-equilibrium conditions 
in the decay of the symmetric metastable phase by the nucleation of bubbles of the broken- 
symmetric.phase. Baryon number is generated by the expansion of the bubble wall either by 
the scattering of heavy fermions off the wall, or by the unwinding of topologically non-trivial 
configurations in its neighborhood [for a review, see Cohen et al.., 19931. 

Although it is now generally believed that a successful baryogenesis scenario at the 
electroweak scale requires a departure from the minimal electroweak model, understanding the 
dynamics of the electroweak phase transition is a crucial ingredient for any viable scenario. 
One of the main obstacles to a comprehensive study of the electroweak phase transition is our 
lack of knowledge of the correct effective potential that describes the system in the vicinity of 
the critical temperature, Tc. Problems due to infrared divergences have been known since the 
original work of D&n and Jackiw (1974) and Weinberg (1974). For the current limits on the 
masses of the Eggs and top quark. the l-loop effective potential predicts a weak first-order 
transition. This is somewhat unsettling, because we know that weak first-order transitions 
have large infrared divergences which are not accounted for by the I-loop calculation. In other 
words. if the l-loop potential predicts a weak first-order transition, chances are that the actual 
transition is even weaker. if not actually second order. It is thus important to incorporate 
the infrared corrections to the effective potential. In fact, a few recent works have incorpo- 
rated some infrared corrections caused by the vanishing of vector boson masses near # = 0 by 
summing over ring, or daisy, diagrams. As clearly shown in the paper by Dine et al. (1992), 
these corrections decrease the effective tunneling barrier for decay, weakening the strength of 
the transition. The validity of the ring-improved effective potential for the temperatures of 
interest relies on cutting off higher-order contributions by invoking a non-perturb&&e mag- 
netic plasma mass, A&.,,, 
9=T/fi&diSm~* 

for the gauge bosons such that the loop expansion parameter, 
is less than 1. Since Lhis IIon-pcrt.nrl,ati~,c contribution is not well understood 

at preseut, one should take the results from t,he riug-inlproved potentials with some caution. 
In addition to infrared problems c;~sed by the vanishing of the vector boson masses 

in the symmetric phase, for sufficieutly weak trunsitions we point out that one must take 
into account infrared divergences caused by the small Higgs mass if M,, << T. We will 
review the well known fornmlism for field theory at high temperatures. 1Ve point out that 
the loop expansion parameter diverges as the Higgs mass vanishes. This means that diagrams 
contributing to the l-loop potential that are unimportant at either high or low temperatures 
may be dominant around the critical temperature. For instance, at zero temperature the 
loop expansion parameter for the Higgs loops is X, the Higgs self coupling. However for 
the 3-dimensional effective field theory at high temperature, the loop expansion parameter is 
XT/MH(T) for the Higgs loops. For T > M,,(T), the loop expansion is not under control. 
We point out that this is exactly the situation in the standard electroweak model between the 
critical temperature and the spinodal temperature where M”(T) vanishes. 

In this talk I will attempt to estimate the magnitude of the infrared corrections to the 
l-loop electroweak potential near the critical point using a familiar technique from condensed- 
matter physics. In particular, I will argue that near the critical point it is possible to estimate 
the fluctuations in the spatial corrclatious of the magnitude of the scalar field by using well 
known results from the theory of critical phenomena. I will show that the effective corrections 
to the critical exponent that controls the behavior of the correlation length for the electroweak 
model can be approximated by considcriug an associated Giuzburg-Landau (G-L) model just 
above its critical temperature. This approach has been successfully implemented by De Gennes 
(1973) in the study of liquid crystals, and recently by Ferndndez et al. (1992) in the study 
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Fig. 1. One-loop clectroweak potential at several different temperatures 

of the ‘i-states Potts model which exhibits a weak first-order transition. It is instructive to 
examine the critical behavior of the l-loop effective potential for the electroweak model. 

The l-loop finite-temperature corrections to the electraweak potential have been stud- 
ied in detail in the literature, most recently by Anderson and Hall (1992). They showed that 
a high temperature expansion of the t-loop potential closely approximates the full l-loop 
potential for MM s 150 GeV and Af= 5 200 GeV. (It is important to differentiate between 
the finite temperature Higgs mass, M,,(T) and the zero-temperature Higgs mass, MM.) They 
obtain for the potential 

&w(q,T) = D (T’ - ?-;) r++’ - ET&’ + &$‘, (1) 

where D and E are given by D = [G(Mw/~)’ + 3(Mz/o)2 + G(MT/u)~] /24, and E = 
[G(A~w/u)~ + ~(Mz/o)~] 112~. Here Tz is the tcmpcrature at which the origin becomes an 
inflection point (i.e., below Tz t,he symmetric phase is unstable and the field can classically 
evolve to the asymmetric phase by the mechanism of spinodal decomposition), and is given by 

T> = ,/m (2) 

The physical Higgs mass is giveu in terms of the l-loop corrected X as ‘Mi = (2X + 12B)o’, 
with l3 = (6A4$, + 3Mi - 12Al;) /G4rr’u’. We use A& = 80.6 GeV, MZ = 91.2 GeV, and 
CT = 246 GeV. The temperature-corrected Higgs self-coupling is 

where the sum is performed over bosons and fermions (in our case only the top quark) with 
their respective degrees of freedom gBCF), and Incn = 5.41 and lnc~ = 2.64. 

Apart from T2, there will be two temperatures of interest in the study of the phase 
transition. For high temperatures, the system will be in the symmetric phase with the potential 
exhibiting only one minimum at (4) = 0. As the Universe expands and coois an inflection 
point will develop away from the origin at 

hnr = 3ET, /?XT~ (4) 
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Fig. 2. Parameter z = E2/h-D a.5 a function of the Higgs hoson mars for several values of 
the top quark mass. 

where T1 is given by 
T, = T,j& - 9E=/8XTD (5) 

For T < TI, the inflection point separates into a local maximum at & and a local minimum 
at &, with &. = {3ET + [9EZT2 - SXTD(T~ - T,~)]“‘}/~xT. At the critical temperature 

T, = Tz/Jl - E=JXTD , (‘5) 

the minima have the same free energy, V~w(q++,Tc) = V,w(O,TC). (Note that V($,T) is the 
homogeneous part of the free energy density whose minima denote the equilibrium states of 
the system. Accordingly, in this work we freely interchange between calling V(+, T) a potential 
and a free energy density.) 

In Fig. 1 we show tbc clect~romenk poteutinl at temperatures T > T,, TI, Tc, Tz, 
and T = 0. The difference Ibctweeu the t~cmpcr;tr~res T, 1 Tc. and T.2 is determined by the 
parameter 

z = E’JXrD. (7) 

This parameter is slmw~~ in Fig. ? for different values of A3,, and Mr. Clearly z < 1 for the 
minimal electroweak model, so we ctul write the approximate relations 

Tc z Tz(l+z/2) 

TI cx Tz(l+gz/lG). (8) 

It is useful to understand why tbe transition is first order; i.e., why at TC there is 
a barrier between the high-temperature plmse and the low-temperature phase. It has been 
appreciated for a long time tbat a pure X4’ theory is equivalent to a Ginzburg-Landau theory, 
which has a second-order phase transition. The reason the electroweak theory is first order, 
rather than second order, is that there is an additional attractive force between SC&U particles 
mediated by the vector bosons. Tlris additional attractive force leads to a condensate of the 
Higgs field at a temperature slightly above T2. T, and Tc would be the same (a second-order 
transition) in the absence of gauge bosom interactions. (Note that as E - 0, i.e., as vector 
interactions are turned off, T, - T,.) 
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The whole picture of bubble nucleation relies on the behavior of I/Ew(#,T) between 
Tc and l’z. In the standard picture. one assumes t,hat tbe system is in a near-homogeneous 
state around its equilibrium value (in this case ($) = 0), so that large thermal fluctuations 
in the spatial correlations of 0 are exponentially suppressed above the scale of the thermal 
correlation length, E(T), 

<-z(T) ~ hi;,(T) = B*vE”(;4; (d)‘T) (9) 

In this case, for some temperature Tc > T > T,, critical bubbles of the broken- 
symmetric phase appear and expand. They eventually collide with other bubbles, converting 
the symmetric phase into the broken-symmetric phase. 

For the electroweak potential the difference between T, and Tz is very small: Q(Tc) c 
(Tc - Tz)/(Tc + Tz) w z/4 < 1. The transition is predicted to be we&y first order. As 
mentioned above, infrared corrections to the l-loop potential can be very important due to its 
flatness (small mass) around 4 = 0. As we shall see below, the loop expansion parameter for the 
Higgs loops at high temperatures is not X. but ATT/M,,(T). 1Ve can estimate where this will 
become large for the standard elcctroweak model. Before starting, it is helpful to note that the 
temperature-corrected Higgs self-coupling, X.r. is approximately equal to the lree-level Higgs 
self-coupling, Xo = M$/?o’. For the electroweak potential near TC, Mf,(Tc) = 2D(T$ -T:). 

Since T;/Ts = 1 - EZ/X~D, AI,, = TcEm. Tl 

parameter is XTTC/MH(TC) = A!/*/Efi. 

lerefore at Tc the loop expansion 
N ow as discussed above. to a reasonable accuracy 

XT = Mi/2u’ (here, of course. M,, is the zero-temperature mass). Thus 

XTTc/M,,(Tc) = M;,/4E03 - l.GS(Mrr/lOO GeV)3. (10) 

For MH greater than about 84 GeV, at Tc the expansion parameter exceeds unity. Between 
Tc and Tz the mass goes to zero. so the corrections are even larger. 

The question we would like to address is, can we estimate the magnitude of the infrared 
corrections in a simple way? Since we are interested in the behavior of the system around 
(4) = 0 for Tc 2 T 2 Tz. we will show that it is possible to map the electroweak potential 
in a small neighborhood around d = 0 to an effective Ginzburg-Landau (G-L) theory which 
exhibits a second-order phase transition at Tz. The critical behavior of this model has been 
extensively studied in the seventies using renormalization group (RG) techniques pioneered by 
Wilson. In particular, infrared corrections to the G-L model which are important around the 
critical temperature have been computed using E-expansion techniques. The net result is that 
the magnitude of fluctuations on the spatial correlations of the order parameter calculated 
hy mean-field theory (which we will show is equivalent to the I-loop potential) is largely 
underestimated. We will obtain the corrections to the G-L model and map it hack to the 
electroweak potential in an attempt to estimate the infrared corrections to the l-loop result. 
We will show that the corrections to tunneling rates can be very large, indicating the failure 
of the ntive I-loop potenti.al to describe the dynamics of the transition. 

2.1. Critical behavior of @’ Jield tbeon~ 

In order to study the critical behavior of a 4” scalar field theory we follow Ginsparg 
(1980) in reducing the theory to nn effective theory of the static mode of the scalar field in 
d = 3 dimensions. The generating functional in the presence of a source J(x) for a zero 
temperature scalar field theory in Euclidean (t = -ir) space-time is (we use fL = c = I) 

In order to study the theory at finite temperature we take the Euclidean time to he periodic 
in 0, and sum only over periodic p.zths with $(0,x) = $(T,x), as is well known. Due to the 



periodic behavior in T me can espnnd the scalar ticld as 

4(7,X)= i E J~elp(iw.,r+ik.x)m.(k); W., = 2rrn/o. (12) 
“=-CD 

By resealing the field b,(k) by ?--lj2, and separating the static (n = 0) mode from the rest, 
we obtain, 

Z[J] = 
J periodic 

[%+des~ { - /k ; (k* - 11~~) $,(k)$,(-k) 

-go /, h [(2~~1~)2 + k* - d] w+,q-k) + J ~4 

-? ’ /k,k>,k,, ~,(k)~,,(k’)m,..(k”)~-._,.-,,.(-k - k’ - k”) (13) 
“,“‘,““=-cm 

where Sk = fd3k/(2rr)3. The effective d = 3 theory is obtained by summing over all the 
n # 0 modes. Perturbatively, this means that all internal lines in the Feynman diagrams 
will correspond to sums over the n. # 0 n~odcs, and the external lines are given only by 
the n = 0 mode. This way the higher modes will coutribuw to the mass. wave-function 
renormaiizations, and to the IV-point, function for the effective theory of the n = 0 mode. It 
is then possible to construct an effective Lagrangian Celr for the d = 3 theory by a systematic 
perturbation expansion in A. The hxding contribution 10 the ?-point function is given by the 
tadpole diagram obtained by sunming over the higher modes in the Feynman propagator. 
One obtains to leading order, 

C.,=; 
( 

-d+$+... Qo(k)&(-k)++;+.... 
> 

(14) 

Note that in the effective d = 3 theory the coupling A is dimensionful with the temperature 
naturally setting its dimensionality. This temperature dependence will not be relevant for the 
discussion of the critical behavior of the theory and will be absorbed into the definition of 
A. The static critical behavior of the original d = 4 theory is completely embodied in the 
effective theory for the II = 0 mode in d = 3. To Icading order in A, this theory exhibits a 
phase transition at a critical tcmpcrnture 

T$ = I/@ = T (1+0(x)+...). (15) 

It turns out that the critical behavior of the theory above, known as the G-L model, has been 
extensively studied using the E-expansion to incorporate higher-order infrared effects. From 
Cc~ we can obtain the effective 3.dimensional potential to leading order in A, 

V&L($,T) = +P + ;$‘: n?(T) G ; (T’ - T:) , (16) 

where 4(x) is the static scalnr field. which is t,he relevnnt order parameter in equilibrium. 
As is well-known, t,his theory exhibirs a second-order phase transition at Tc; above 

Tc the left-right symmetry is exact and the equilibrium value of 4 is ($)=O. Below TC 

the symmetry is broken alld the equilibrium value of 4 is (4) = i [~*(T)/A]“*. In the 
thermodynamic limit. the system will eventually settle nt one value of 4, since any interface is 
energetically unfavored. Of course ($) only gives information about the homogeneous behavior 
of qi. Typically, there will be fluctuations around (4) w UC I h are correlated within the correlation 

\ 
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length scale defined in Eq. (9). For temperatures above and below Tc (denoted by + and - 
respectively) we obtain from Eq. (16) 

C;‘(T) = m’(T) = ;T$(l + T/Tc)* (3) , 

t:*(T) = -2m*(T) = xT2(1 + T/TC)* 
2 c 

This is the well known result from mean-field theory, usually expressed as 

hd-) = IT-T&‘“; ” = 112. (19) 

where the critical exponent Y expresses the singular behavior of c(T) as T -+ TC both from 
above and below. It is clear that fluctuations around the equilibrium value of V$ are indeed very 
large near Tc, being considerably larger than the mean field results. Thus, the assumption of 
near homogeneity is not valid if T is sufficiently close to T,-. 

In order to handle the infrared divergences that appear near Tc, the RG is used to 
relate a given theory to an equivalent theory with larger masses and thus better behaved in 
the infrared. Within the E expansion. one works in 4 - E dimensions and finds a fixed point 
of order E of the RG equations, taking the limit E - 1 in the end. To second-order in E one 
obtains, 

1 1 7 2 v = ;i + E” + =E Y 0.63. v-3) 

The corrected critical exponent embodies corrections coming from the infrared divergences 
near Tc. The &-corrected correlation leugth can he written above Tc as 

[c:(T)]-’ = ~~~ (I + T/T~) (&$)O”’ 
c 

Below T, we obtain. 

(21) 

so that, in both cases the radio between the mean field and E-corrected correlation lengths can 
be written as 

EMFV) - = ‘J;‘~(T); 
FAT) 

r~c(T) s ‘;;g’. (23) 

If we are interested in studying the behavior of the theory above Tc we can use the 
fact that c(T) = m- ‘(T) to obtain an e-corrected mass, 

m.,(T) = &‘3(T)m(T). (24) 

A similar result can be easily obtained below T,. 

2.2. Infmred comstiom to the electroweak potential 

Now I will argue that we can obtain information on the critical behavior of the elec- 
troweak phase transition between TC and Tz by studying a G-L model with a critical temper- 
ature that we take to be Tz. This is possible since Tc is so close to Tz due to the weakness 
of the transition already at l-loop level. [SW Fig. 2.1 Thus, we will estimate the infrared 
corrections to the electroweak model by looking at the G-L model around Tc. Clearly this is 
only an approximation to treating the full problem of incorporating the E-expansion for the 



Fig. 3. r-corrected mass az a function of the Higgs mass for several values of the top mass. 

standard model. However, from the nature of the potential, we claim that our results are a 
lower bound on the true infrared corrections, which we conjecture will be even more severe 
than what we will estimate below. 

Start with the simplest possible approach, by studying the G-L model defined by the 
free energy density, 

L&-,(&T) = 94’ + $r$‘; m’(T) z 20 (T’ -T,‘) , (25) 

where D. T,, and AT are defined <as above. This is simply V,w(& T) with E - 0. This 
model exhibits a second-order phase t,ransit,ion at T = Tz. Recall that this is the temperature 
at which the barrier disappears in the l-loop elcctroweak potential. [See Fig. 1.1 Thus. we 
are interested in the behavior of this model for temperatures above T2. The claim is that for 
T < T, and in the neighborhood of (0) = 0 this model cat! be used to give us an esfimate of 
the infrared corrections to the elcctroweak potential. Note that our choice of the mass is such 
that the correlation length for fluctuations around equilibrium is the same in both models. 
Thus. the behavior around (4) = 0 IS well-matched by the G-L model 

From the results of the previous section, the E-corrected mass is 

m:(T) = 2Dr#2e(T) (Ta - T,‘) ; r/?(T) = $$ 

The value of m(T) at T = Tc can be found using ?‘c and Tz from Eqs. (6) and (2): 

(26) 

,,(Tc, = l- dl - E’IbD 
1-b dl - E’/XrD’ 

In Fig. 3 we show m~(T~)/m*(Tc) = @“(Tc) as a function of the Higgs mzss for several 
values of the top mass. It is clear that the infrared corrections are quite large for all values 
of parameters probed. Below Tc the potential is weu flatter near the origin and the infrared 
problem is even more severe. For larger values of 0 the cubic term becomes important increas- 
ing the flatness of the electroweak model compared to the G-L model (leading again to more 
severe infrared problems). Again we stress that this is not intended to be an exact calcuiation 
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of the infrared corrections to the electroweak potential, but simply an estimate of the magni- 
tude of these corrections for small 6 As mentioned earlier, we expect the true corrections to 
be even more severe that what we obtained above. 

As a possible application of the above results, we estimate the corrections to the l- 
loop tunneling rate using m:(T). Tl ns is clearly an approximation since we have stressed that 
our approach is only valid in a small neighborhood of (4) = 0, and should not be trusted 
for $ > D(T’ - T$)/ET, for a given 7’. We want to estimate how severe the corrections to 
tunneling could be due to the smallness of the curvature at the origin. The finite-temperature 
tunneling rate, r 0: exp(-.53/T), for a theory with a potential like the eiectroweak potential 
has been shown by Dine et al. to have an approximate analytical expression for the exponent 
given by 

s3 - = 4.85g+) -b-mVT) 
T @= 2EZT.Z ’ 

o.26 1 (l-a)’ 
(29) 

However, according to our arguments. for T < T, the effective curvature of the potential 
around the equilibrium point is smaller than what is estimated from the l-loop approximation. 
The effective tunneling barrier is then also smaller, and the kinetics of the transition may 
be different from the usual nucleation scenario. [An interesting possibility is that the critical 
temperature for the corrected theory is larger than the l-loop result. However, as we remarked 
earlier, our method is only applicable in a small neighborhood of v$, and we cannot use it to 
study the potential away from the origin which is necessary to predict Tc in a first order phase 
transition.] Taking into account the E-corrections above, the exponent becomes, 

m?(T) 
$ = 4.8517;~~~(T) -f(u.‘); 

Clearly use of the e-expansion improved mess cnn have an enormous effect upon the 
tunnelling rate, changing the exponent by a large factor. 

2.3. Thermal Fluctuations and Su6-Giticnl Bubbles 

Now I discuss how it is possible to examine the strength of a first-order transition 
by a simple method bused on thy work of Gleiser, Kolb, and Watkins (1991) estimating the 
thermal nucleation rate of “sub-criticnl bubbles.” which are correlation volume fluctuations of 
one phase inside the other phase. We will argue that when applied to the electroweak phase 
transition, it gives results which are qualitatively cousistent. signaling the failure of the nai’ve 
l-loop potential as a valid approximetion to study the dynamics of the transition. Since we 
have recently applied this method to the clectroweak potential of Eq. (l), we will be quite 
brief here and refer the reader to Gleiser, Iiolb, aud Watkins for details. 

Consider the electroweak potential of Fig. 1. &low T, a new minimum develops at 
4+ way from the symmetric minimum at (4) = 0. Tl lere will be a non-zero probability for 
bubbles of radius R of the new phase at $I+ to be thermally nucleated. The thermal nucleation 
rate for producing a bubble of radius R is given by r(R, T) Y exp[-F(R)/T], where F(R) is 
the free energy of the fluctuating region of radius R. For T 2 Tc it is clear that the larger the 
bubble the more unfavored it is, since the free energy is a monotonically increasing function 
of R. The bubbles will shrink in a time scale determined by many factors. For example, for a 
curvature dominated motion of the bubble wall, which is probably a good approximation close 
to Tc, the radius of a large bubble shrinks as t’j3, Some recent numerical studies showed that 
even small bubbles persist longer than one would ndively estimate, bouncing back a few times 
before dissipating all their energy into quanta of the field. However, due to the exponential 
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suppression in their production rate. unless the transition is very weakly first order (with the 
whole bubble picture being invalid in this case), only bubbles with small enough radius can be 
efficiently produced so that at any given time B reasonable fraction of the horizon volume can 
be occupied by the new phase at a%+. Although there is a distribution of bubbles with different 
radii, it is clear from the above arguments that bubbles with a correlation volume will be 
statistically dominant. (The kinetics of the transition is bound to be much more complicated 
than these simple arguments may imply. There will be many different processes contributing 
to the number density of bubbles of a given radius as a function of time, such as capture and 
evaporation of particles from bubbles, coalescence due to bubble collisions, shrinking of larger 
bubbles, neighbor-induced nucleation, and possible shape instabilities, to name just a few.] 

The basic idea behind the sub-critical bubbles method is that for sufficiently weak first 
order transitions, the rate for producing bubbles of a correlation volume is quite large, so that 
at any given time there will be an appreciable fraction of the total volume occupied by the new 
phase. If this is the case, the usual assumption of near-homogeneity used in vacuum decay 
calculations is not valid; instead of having critical bubbles being nucleated on a background of 
the metastable phase, nucleation would occur in a background which is better described by a 
dilute gas of small, non-perturbative fluctuations. There is no reason to expect that the usual 
calculation for the decay rate is applicable in this case. 

The free energy of a spherically symmetric fluctuation around equilibrium is 

We will focus on the electroweak model at T,. In priuciple. there will be fluctuations from 
@ = II to @+ and back. although at Tc the free energies for these fluctuations are identical. 
The rates for the thermal fluctuations can be estimated by making an ansatz for the radial 
profile of the sub-critical bubbles. Following Gleiser. Kolb, and Watkins, we write 

b+(r) = m+exp (+‘/I*), (32) 

where O+(r) corresponds to a bubble of broken phase d+ nucleated in the symmetric phase 
4 = 0. The parameter ! controls the approximate size of the bubble which we take to be the 
correlation length. Introducing the dimensionless variables X(p) = $(7)/g. i(T) = !(T)o, 0 = 
T/u, and p = TV, we abrain 

F+(8)= a3'2X:io y (8; -I$) - TX+ + +$Y: )I . (33) 

In order for sub-critical bubbles to be of cosmological relevance, their thermal nucleation rate 
must be considerably larger than the expansion rate of the Universe, r(<(T),T)/H > 1, with 
i7 2 1.G69!‘2T2/df~~, where g. z 110 is the number of effective relativistic degrees of freedom 
at the electroweak scale. Neglecting pre-fxtors. this condition can be easily seen to lead to the 
inequality F+(T)/T < 34. It is clear that at Tc rhis condition is comfortably satisfied for the 
present lower bound on the Higgs mnss. AI” >_ 57 GeV, for which we obtain r({, Tc)/H N 10”. 

Recently, Dine et nl. argued that sub-critical bubbles would not be of relevance for 
most (if not all) the parameter space of the stnndard uuxlcl due to the snmllness of the thermal 
dispersions around (4) = 0. \Ve agree with their results for Al,, u 60 GeV. However, for larger 
Higgs masses fluctuations in long wavelengths nre quite large, contrary to their claim. We 
hoped to have shown here that both the estimate from the thermal dispersion and from sub- 
critical bubbles indicate that there will be large fluctuations around equilibrium, signaling the 
failure of the l-loop potential to describe the dynamics of the transition. 
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2.4. Electmweak Odook 

In this work we have argued that it is possible to study the critical behavior of a weak 
first order transition which has a spinodal instability at some temperature Tz by mapping its 
behavior around equilibrium, (p), to an effective Ginzburg-Landau model above its critical 
temperature Tz. In this way, both models have the same spinodal instability at (#) so that 
infrared corrections can be estimated from well-known E-expansion methods. This approach is 
completely general and can in principle be applied to any sufficiently weak first order transition. 
It suits the standard electraweak model particularly well due to the closeness of its critical 
temperature Tc to the spinodal instability temperatureT2. In fact, the difference between the 
two temperatures should provide a qualitative measure of the weakness of the transition. 

Incorporating the c-expansion results leads to a larger correlation in the spatial fluctu- 
ations of the order parameter, which can be translated into a smaller (infrared corrected) mass 
for excitations around (4). Thus, the strength of the transition is considerably weaker than 
one would estimate from the nrCve l-loop potential. We do not claim here to have obtained 
the E-corrected effective potential. but an estimate of the infrared corrections which are not 
included in the l-loop result. Our results provide a simple way to examine the importance of 
these corrections around Tc. offering a simple way of estimating the strength of the transi- 
tion. If the 7 parameter is close to unity at the critical temperature TC the transition is well 
described by the l-loop result. Otherwise, the transition is weakly first order, and one should 
be very careful when adopting the usual vacuum decay formalism to study the transition. 
For temperatures just below or above Tc, the large fluctuations around equilibrium are quite 
apparent. In particular, one can picture the behavior of this system just below its critical 
temperature as being qualitatively similar to the behavior of a weak first-order transition at 
its critical temperature. 

The work described here is in some sense a different approach to the problem of the 
infrared problems in the perturbation expansion studied by many people. In most works, 
heroic efforts are made to isolate and calculate the most important contributions of the higher 
order diagrams. Here we are simply able to estimate the magnitude of the corrections. They 
are obviously going to be quite large, and any detailed model for electroweak baryogenesis will 
probably have to wait until these problems are solved. 

For more details on the work reported here, see Gleiser and Kolb (1993). This work 
also contains references to the import.nnt perturbative approach. 

3. Gravity and Global Symmetries 

3.1. Tezture 

For the most part, cosmologists have concentrated on the analysis of topological defects 
that can arise in gauge theories. However defects can also arise in the spontaneous breaking 
of global symmetries. The analogies of the local strings and monopoles are global strings and 
global IIIO~OPO~~S. The global field configurations look like their local counterparts for the 
scalar field, but of course there is no vector field. This means that formally the string and 
monopole solutions have iufinite energy (recall for the local defects the energy in the gauge 
fields cancels the energy in the Higgs field far from the defect.) This is really not a problem, 
because there the divergence in the energy is only logarithmic, and there are many physical 
effects to cut it off (such as the inter-defect separation). There are just two main differences 
in the behavior of gauge and global defects: 1) the energy of the global defects are slightly 
more spread out, 2) the global strings can radiate energy by the emission of Nambu-Goldstone 
bosons. 

However there are new types of defects in global symmetry breaking that do not 
appear in the breaking of gauge symmetries. For example, in the spontaneous breaking of a 
global O(N) model to O(N - 1). for N = 1 wall s appear, for N = 2 global strings result, for 
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N = 3 global monopoles are produced. These all have counterparts in local theories. However 
for N > 3 global defects also exist: for J\’ = 4 the defect is called global texture. and for 
N > 4 they are called Kibble gradients. Texture corresponds to knots in the Higgs field that 
arise when the field winds arouud the three sphere. These knots are generally formed by 
misalignment of the field on scales larger than the horizon at the symmetry breaking phase 
transition because of the Kibble mechanism. As the knots alter the horizon. they collapse 
at roughly the speed of light, giving rise to nearly spherical energy density perturbations. 
New knots are constantly coming into the horizon and collapsing, leading to a scale invariant 
spectrum of density perturbations. The magnitude of the perturbations is set by the scale of 
the symmetry breaking, and for scenarios of structure formation involving texture, the scale 
of symmetry breaking must be about 10’6GeV. 

A theory of texture or Kibble gradients being responsible for the seeds of large-scale 
structure has been formulated by Turok, Spergel and collaborators (Pen et al., 1993). Texture 
would provide a very promising alternative to conventional inflation scenarios for generating the 
primordial density fluctuations if indeed they are ubiquitous in particle physics models. In fact, 
texture arises in a variety of theories with nonabelian global symmetries that are spontaneously 
broken. However, even an extremely small amouut of explicit symmetry breaking will spoil 
the texture scenario. I would like to close these lectures by discussing how sensitive this 
theory is to Planck-scale effects. This idea was recently discussed by Holman et al. (1992) and 
Lmionkowski et al. (1992). 

To illustrate these possibilities. consider a theory with a global O(N) symmetry spon- 
taneously broken to O(N - 1) by an N-vector. The theory is described by the scalar potential 
I’(*) = A (*‘Wa - f;)‘. As ment,ioued above. texture arises for N = 4. There are many 
arguments suggesting that 011 global symmetries are violated at some level by gravity. For 
example, both wormholes and black boles cao swallow global charge. “Virtual” black holes or 
wormholes. which should. in principle, arise in a theory of quantum gravity, will lead to higher 
dimension operators which violate rbe global symmetry. There are two possible assumptions 
one might make about the fate of global symmetries in a Universe that includes gravity. The 
strong assumption is that. despite all indications from low-energy, semi-classical gravitational 
physics (black holes, wormholes, etc.), it is possible to have exact global symmetries in the 
presence of gravity. This is the assumption made in the standard texture scenario. The weak 
assumption is that the global symmetry is not a feature of the full theory. There are two 
possible realizations of the weak assumption. Either the global symmetry is approximate, in 
which case one must include the effects of higher-dimensional, non-renormalizable, symmetry- 
breaking operators, or, consistent with indications from semi-classical quantum gravity, the 
global symmetry is never even an approximate symmetry unless protected by gauge symme- 
tries. 

If one makes the weak assumption. then one must include explicit symmetry breaking 
terms. If one assumes that gravity does not respect global symmetries at all, then renor- 
m&able operators like Mpr’&b@“#‘, which expiicitly break the global symmetry, should be 
included. These terms are expected, for instance, by the action of wormholes swallowing global 
charge. If virtual wormholes of size smaller than the Planck length are included, then we ex- 
pect X06 to be of order uuity. In this case it is wrong to consider an effective low-energy theory 
with a global symmetry. If one makes the assumption either that wormholes do not dominate 
the functional integral, or that the global charge is protected by gauge symmetries, then it may 
be possible to suppress the renormalizable operators. But even in this case higher dimension 
operators should be included. Au example would be a dimension-5 operator, which would add 
to V(a) terms like (X.a~d~/n~p,)~“~b~c~d~‘. S UC L I t erms explicitly break the global symme- 
try and lead to a mass for the pseudo-Nambu-Goldstone mode of m2 o[ XfG/M,l. Of course 
the mass is suppressed by Aipl, but. we will show below t.hat it still has a drastic effect ou the 
texture scenario. 
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The implications of the strong sod weak assumptions for texture are as follows: With 
the strong assumption. the texture scenario is unaffected. If one allows unsuppressed wormhole 
contributions, global symmetries (and hence texture) are n non-starter. If all effects of grav- 
itational physics in the low-energy theory are contained in non-renormalizable terms, a more 
careful analysis is required. This is the possibility we explore uow. 111 this approach we are 
then required to include all higher dimension operators consistent with the gauge symmetries 
of the model and suppressed by appropriate powers of Mp,. 

We now consider the effects of the higher dimension operators. These terms will break 
the symmetry explicitly, generating a complicated potential for the Nambu-Goldstone modes. 
In general, the vacuum manifold will be reduced to a point, though the potential will likely 
have many local minima. To see how this works, consider the theory discussed above with 
N = 3. Here, the vacuum manifold is the two sphere and the model, in two spatial dimensions, 
will have texture. (In three spatial dimensions, the model admits both global monopoles and 
texture, although the texture in this case is not spherically symmetric. We express the field 

* = f 
( 

e m .0.6 B 
sin - cos -, sin - sm -, cos - 

fr IT fT fT fT > 
, (34) 

where 8 and +i are the augular variables 011 the two-sphere which represent the Nambu- 

Goldstone modes of the problem. 
The effect of the dimension 5 operators is to iutroduce 21 terms to the potential for 

the field which depend explicitly 011 R and 4. (These are nothing more than the Y,,, I’&,,, 
and Ys,,, spherical harmonics.) Note that in general, the mass of the Nambu-Goldstone boson 
in this potential is roughly f~(f~/M,w)‘/~. 

So long as the mass of the Nambu-Goldstone mode is small compared to the Hobble 
parameter, the field will evolve essentially as in the original texture scenario. However, once 
the Compton wavelength of the Nantbu-Goldstone mode enters the horizon, the field will begin 
to oscillate about the minimum (or rather tire closest local minimum) of its potential. The 
field will then align itself au scales larger tbau the horizou and texture on all scales quickly 
disappear. For texture to be important for structure formation, they must persist at least 
until matter-radiation decoupling when H N lo-*‘eV. 

The contribution of a dimension 4+d operator to the Nambu-Goldstone boson mass is 
m N fT(fT/Mpr)d/2. Given that the texture scenario requires fT u 1O’e GeV, the requirement 
that n,< 10-2*eV implies that d_>35; i.e., we must be able to suppress all operators up to 
dimension 40! It is rather difficult to see how this might occur; even the use of additional gauge 
quantum numbers could not prevent the occurrence of dimension 6 operators which break a 
non-Abelian symmetry (although they could protect an Abelian symmetry). We note that if we 
consider dimension-5 operators, then the mass becomes dynamically important immediately 
after the phase transition: texture therefore never exists. 

3.2. Ations 

It is well known that there are two contributions to _CP violation in the standard 
model. First, QCD instantons induce a term &co = R tr CC in the effective Lagrangian, 
which violates both P and CP. Here. 8 is a dimensionless coupling constant, which one might 
naively expect to be of order unity. Second, the quark mass matrix can be complex, leading 
to a CP-violating phase in the Kobayashi-Maskawa mixing matrix. The phase of the quark 
mass matrix gives rise to an additional contribution BQFo = argdet M, to the coeffiecient of 
tr GE. The degree of strong-CP violation is controlled by the parameters = 0 + argdet M,, 
which is constrained by mea.suremeuts of the electric dipole moment of the neutron to be less 
than lo-‘. The strong-CP problem is that there is no reason for these two contributions, 
which arise from entirely different sectors of the standard model, to sum to zero to such high 
accuracy. 
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The solutions that have been proposed for the strong-CP problem fall into three 
general classes. First, there are those that rely on the existence of an extra global ci(l)a 
symmetry. This symmetry arises naturally if one or more of the quark masses are zero. In 
this case, it can be shown that the QCD 0 parameter becomes unobservable. This solution is 
considered unattractive, since experimental evidence implies that it is unlikely that any of the 
quarks are massless. Peccei and Quinn (PQ) proposed a solution to the strong-CP problem 
in which they introduced an auxiliary, chiral U(l)pq symmetry that is spontaneously broken 
at a scale f., giving rise to a Nambu-Goldstone boson a known as the axion. This symmetry 
is explicitly broken by instanton effect,s. This explicit breaking generates a mess for the axion 
of order tn. N AZ/f,,, where A is the QCD scale. The important point is that the effective 
potential for the axion has its minimum at (o/f,,) = -3. It follows that when the .&on field 
relaxes to its minimum, the coefficient of trGe is driven to zero. This solution has received 
the most attention and has been explored by many authors. 

A second class of solutions involve models where an otherwise exact CP is either softly 
or spontaneously broken. Specific models have been proposed where B is calculably small and 
within the experimental limits. 

A third class of solutions involve the action of wormholes. As we will argue below, 
wormholes can break global symmetries explicitly, thus giving rise to potentially large contri- 
butions to F. However, under certain assumptions, it can be shown that wormholes actually 
have the effect of setting 3 = 0. 

Here, I address the question of whether these solutions to the strong-CP problem 
can remain viable if Pluck scale effects break global symmetries explicitly. There are many 
arguments suggesting that all global symmetries are violated at some level by gravity. First, 
no-hair theorems tell us that black holes are able to swallow global charge. This allows for 
a gedanken experiment in which a quanta with global charge “scatters” with a black hole, 
leaving only a slightly more massive black hole, but one with indeterminate global charge as 
dictated by the no-hair theorem. Heuristically, if one considers “virtual” black hole states 
of mass M arising from quantum gravity, one can integrate them out to yield global charge 
violating operators suppressed by powers of 114, where 114 might be as small as Mpl, the Planck 
mass. 

Another indication that gravity might not respect global symmetries comes from 
wormhole physics. Wormholes are classical solutions to Euclidean gravity that describe changes 
in topology. Integrating over all worn~holcs (with a cutoff on their size) yields a low-energy 
effective action that contains operators of all dimensions that violate global symmetries. The 
natural scale of violation in this case is the wormhole scale. usually thought to be very near 
(within an order of magnitude or so) Alp,. 

Without explicit calculations of these effects, we are left with the following prescrip- 
tion: Due to our lack of understanding of physics at the Planck scale. we have no choice but 
to interpret theories that do not include gravity in a quantum mechanically consistent way as 
eflectiue field theories with a cutoff at MP,. If we adhere rigorously to this principle, we are 
then required to add all higher dimension operators (suppressed by powers of Mpl) consistent 
with the symmetries of the full theory at A4pr. As discussed above, it seems very unlikely that 
the full theory respects global symmetries. We note that it would be particularly surprising 
if the entire theory respects U(1) ~4, since this symmetry is already explicitly broken by in- 
Stanton effects. We should note that similar ideas were noted briefly in the prescient papers 
of Georgi, Hall. and Wise. and Lazarides. Panagiotnkopoulos, and Shafi, however, we are now 
in a position to be somewhat more specific about the nature of the Pluck scale effects in 
question and to explore their consequences. 

We consider first the implications for the axion model. To be specific, we consider 
a generic invisible axion model in which an elcctroweak singlet a5, charged under U(l)pq, is 
responsible for spontaneous breaking of the PQ symmetry. We may parametrize 4 on the 
vacuum manifold as # = (f,,/fi) exp(ia/fO), w ere a is the axion field. The effects of the h 
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QCD anomaly are to generate a mas for the axion of order m, +- AZ/f., where A is the 
QCD scale. A variety of atrophysical and cosmological constraints on the axion force fa into 
a narrow range of 10’GeV s f. s lO,*GeV for standard asions, or in a still narrower range 
around 10’GeV for hadronic auions. 

The instanton induced pote,,tial for a takes the form: 

V(a) = rPcos(n/f, +B). (35) 

where 6 is the QCD theta a,,gle i,, a basis where the quark mass matrix is real. While 
dominating the path integral with i,,stanto,,s is probably a bad approximation in an unbroken 
gauge theory like &CD, there are rigorous results slrowing that the minimum of V(a) occurs 
at strong-CP conserving values. 

One possibility is tl,at gravity does not respect li(l)pp at all, as is the cae if wormhole 
effects are large. In this case, one sl,ould include renormalizable operators such as 

AV(@) N M:,@ + l,.c. (36) 

Here d4w is the worml,ole scale, which is expected to be of tl,e order of the Planck mass. With 
the addition of these operators, the PQ symmetry is strongly broken and axions never arise 
at all. 

A second possibility is tl,e CJ( 1) pi is only broke,, through non-renormalizable opera- 
tors of higher dimension. This ca,, occur if either worml,ole effects are suppressed or if the PQ 
symmetry is automatic, i.e., it is prese,,t “n,,ton,atically” whe,, o,,e includes all renormalizable 
terms consistent with a given gauge group. As we shall see below, higher dimension operators 
will also spoil the axion solution to the strong-CP problem except possibly in the case of an 
automatic PQ symmetry, where gauge symmetries can elimi,,ate operators up to some required 
high dimension. 

We now explore tl,e effect ,,po,, the axion potential of di,nension D operators such as 

00 = ““,-, l,+‘“dJ + I1.c. 
Alp, 

(u#b; a+b=D), (37) 

which explicitly break U(l)pp. Operators of dimension D will modify tl,e axion potential of 
Eq. (35): 

V(a) = A4 cos(a/f, + 0) + c A,, c0s(110/f. + 6”) (n=D, D-2, D-4 ,... ), (38) 

where A,, - aof:lAfPrD-‘, and 6, is a phase angle. Let us simply analyze the n = 1 
contribution. The extra contribution will shift the minimum of the axion potential away from 
the strong-CP conserving minimum of (a/fJ = -0. U,,less e = (a/f.) + 9 is less than 10-O 
tl,e amount of CP violation obtained will be in co,,Aict witl, experiment. Tl,e minimum of the 
axion potential is now determined by foV’(n) N A”r + A, sin(r - 6’+ 6,) = 0. The magnitude 
of sin(c - 0 + 6,) will not, in general, be small. and c _ A,/A’. 

Since we know F < 10-O. A, < lo-‘A4. For dimension D operators, we expect 
A, .., aof:/Mp,D-4. Using A = IO-‘GeV. the li,nit a,, c translates into the following limit 
on the dimensio,, D of tl,e operator as a fu,,ctio,, of f. and a~: 

D.5 
89+logao 

9 - lOg(f./1O”GeV)’ 

If Eq. (39) is satisfied. it is very simple to sl,ow that tl,c higher-dimension operators will have 
an insignificant effect a,, tl,e axion mass. In fact, the zero temperature axion mass is just 
m, w A’(1 + e)/f. However, we sl,ould note that the temperature dependence of the axion 
mass is quite different in the presence of higher dimensiorml operators. In particular, the 
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mass induced by the higher dimension operators is always “turned on.” This may affect axion 
cosmology in interesting ways. 

These results at first seem puzzling, since low-energy physics is not in general sensitive 
to physics at the Planck scale. However. Nambu-Goldstone hosons have the peculiar property 
that although they are massless (or very light in the case of pseudo-Nambu-Goldstone bosons 
such as the axion), they are not, properly speaking, part of the low-energy theory as evidenced 
by the fact that self-couplings, and couplings to light fields are suppressed by a power of a 
large mass scale. The fact that a light particle such as the azion is part of the high-energy 
sector accounts for its interesting properties. but also renders it susceptible to high-energy 
corrections. 

In a generic invisible-arion model. there is no reason why a term such as q9/Mpr could 
not be generated (here q~ is a gauge-singlet field). This term would give rise to unacceptable 
shifts in sunless (1~ < 10-‘4--loS(~./10’aCeVl, which is remarkably small. Is there any to avoid 
this problem? 

There are, in fact. ways to construct axion models which suppress higher dimensional 
operators as needed. This construction is based on the notion of automatic PQ symmetries, 
as described above. We first consider R supersymmetric automatic model based on the gauge 
group EB x U(l),v. The superfield content of the model is some number of 27’s with X 
charges il and a 351 with X charge 0. The most general renormalizable, gauge-invariant 
superpotential will only contain terms of the form 27, 27-, %io. where the subscripts 
denote the U(l)x charges. This antomatically gives rise to a PQ symmetry in which the 27’s 
have PQ charge +l and the 351 has I’(2 charge -2. The lowest dimension operators consistent 
with gauge invariance in the superpotential that break the PQ symmetry are terms like 2’7’, - 
me, and 271 27-l (3510)‘. These will then give rise to dimension 10 operators in the 
effective Lagrangian. Furthermore, it is relatively easy to see that we can break the gauge 
symmetries and the PQ symmetry spontaneously in such a way so that the final PQ symmetry 
(a linear combination of the original PQ symmetry and some broken gauge symmetries) is 
broken around IO” GeV. 

It is also possible to construct automatic PQ mod& based on supersymmetric SU(N) 
GUT’s that suppress higher dimension operators to any desired level for sufticiently large N. 
hlodels of this type without exotic fcrmions must all have at least four different chiral matter 
irreducible representations whose Young tableau consist of a single column. ?Jeedless to 
say, these are exceedingly unattractive mod&. They will tend to have many extra families. 
which in addition to a host of pllellolllellological problems. will possibly destroy the asymptotic 
freedom of QCD. 

Planck scale physics may also significantly affect the other solutions for the strong-CP 
problem. As described above, the second class of solutions are based upon models where CP is 
softly or spontaneously broken. How they fare under Planck scale physics depends on whether 
dimension four operators are generated, or whether only higher dimension operators appear. If 
renormalizable operators can be generated, then the violation of CP by Planck scale effects will 
give rise to a trGG term, thus regenerating the strong-CP problem (we should note, however, 
that the coefficient of such a term could be exponentially suppressed if it appeared in some 
controlled semiclassical expansion about some classical configuration). 

Let US next consider the case in which only non-renormalizahleoperators are generated 
by Planckian physics. In this c<ase, all models with fields that acquire vacuum expectation 
values well below the Planck scale (typically the weak scale). will generate corrections to 
3 that are highly suppressed by powers of Mpr. In essence. this is nothing more than a 
restatement of the effective field theory philosophy: as loog as we consider physics at energies 
below the cutoff of our theory, the dominant effects come from the renormalizabie operators 
in the theory. This way of thinking about effective field theories explains why the PQ solution 
is so susceptible to possible effects of gravity. The problem is that the PQ scale is too close to 
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Mpt while the constraints on ?i are too tight. 
Although we have seen that wormholes are troublesome for models that claim to solve 

the strong-CP problem, there is some indication that wormhole effects themselves might drive 
the QCD 8 parameter to a CP conserving value. Within the framework of Coleman’s wormhole 
calculus (which has since been shown to be naive in some respects), s became a function of 
the wormhole parameters. The implementation of Coleman’s prescription for determining 
the value of these parameters was then shown to set s to a CP conserving value. It is not 
impossible that a more sophisticated approach to the wormhole calculus would still lead to a 
similar situation. However, until a better understanding of wormholes and quantum gravity 
in general is reached, this will remain a conjecture. 

We see that Planck-scale physics can have dramatic effects on axion physics. If one 
wants to pursue the axion solution to the strong-CP problem, automatic models such as 
those presented here are probably the only consistent approach that can be taken. We have 
also argued that the other known solutions are essentially unaffected by gravity. The essential 
difference between the PQ and the non-axionic solutions is due to the sensitivity of the Nambu- 
Goldstone boson to physics at energies near the scale of spontaneous symmetry brealring. It 
remains to be seen whether other facets of the axion scenario, such as the axion energy density 
crisis will be modified by the effects considered here. For more details, the see the recent 
papers of Holman et al. (1992b), Kamionkowski et al., (1992b), and Barr et al. (1992). 

In conclusion. any model which depends on the dynamics of Nambu-Goldstone modes 
will be extremely sensitive to physics at very high energies. Texture can by no means be 

considered a robust prediction of unified theories. This is most discouraging for the texture 
scenario. On the other hand, if texture is discovered, then this will have profound implications 
not only for theories of structure formation, but for Planck-scale physics. The same is true 
for axions. A cosmological discovery of either texture or axions would tell us something about 
particle physics at the highest energies. What better way to close lectures on the implications 
of cosmology for particle physics. 

Finally there are other creatures that might be produced in cosmological phase tran- 
sitions. Non-topological solitons, or Q-bcalls. (Fricmao et al., 
(Achucarro and Vachaspati. 1391). 

1988), and electraweak strings 

The lesson for cosmological phase transitions is that even with unlimited energy, accel- 
erators are the wrong tool to probe the non-pertnrbntive sector of field theories. Early-Universe 
phase transitions continue to provide the best arena for the study of aspects of particle-physics 
theories related to coherent. soliton-like objects. The only plausible site for the production of 
objects such as monopoles. strings, walls. sphalerons, and the like is an early-Universe phase 
transition. All of these can have very significant implications for the evolution of the Uni- 
vene. Shp~eons, as well as other solit,ons prodnced in the electraweak transition. have some 
promise of a Cosmologic~ payoff. Of course there is an enormous difference between finding a 
soliton-like solution to the field equations and finding solitons in the Universe. However, even 
if they are not are found, the techniques developed for their study will be useful additions to 
the theorist’s toolbox. 
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